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Point Symmetry Group of the Lagrangian 
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The theory of finite point symmetry transformations is revisited within the frame 
of the general theory of transformations of Lagrangian mechanics. The point 
symmetry group G(L) of a given Lagrangian function L (i.e., the Noether group) 
is thus obtained, and its main features are briefly discussed. The explicit calcula- 
tion of the Noether group is presented for two rather simple c-equivalent Lag- 
rangian systems. The formalism affords an introduction to the Noether theory 
of infinitesimal point symmetry transformations in Lagrangian mechanics; how- 
ever, it is also of interest in its own right. 

1. I N T R O D U C T I O N  

In a previous paper  (Aguirre and Krause, 1990) (hereafter referred to 
as paper I), a brief review of the theory of finite point transformations in 
Lagrangian mechanics is presented, which serves also as a general introduc- 
tion for developing the theory of symmetry in mechanics. In the present 
paper we confine ourselves to some basic ideas leading to a unified theory 
o f  f inite point symmetries in Lagrangian mechanics, within the conceptual 
f ramework adopted in paper  I. 

Although finite symmetry transformations are not usually associated 
with conservation laws [as are the infinitesimal symmetries of  a system 
(Noether, 1918; see also Lutzky, 1979a,b, 1981; Hojman and Harleston, 
1981)], they are of  great interest in mechanics. In this sense, it is enough 
to recall, for instance, the important  role played by finite rotations and 
displacements, or finite Galilei and Lorentz transformations, as symmetry 
transformations in physics. Hence, we deem the present study of  f inite sym- 
metry transformations in Lagrangiafi mechanics to be an interesting subject 
in its own right. 
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As we have seen in paper I, in order to have an adequate transformation 
theory for the Lagrange formalism, one has to enlarge the usual theoretical 
framework from the manifold of configuration space to that of configuration 
spacetime [(Triimper, 1983)], conceived as the background arena on which 
the relevant transformations locally act. In this fashion, the concept of the 
Lagrange group was introduced in that paper. As we shall see in the present 
paper, this enlarged background manifold is also necessary for a satisfactory 
group-theoretic analysis of point symmetries in Lagrangian mechanics. In 
fact, the concept of the full point symmetry group of the Lagrangian will be 
briefly discussed here, as an important subgroup of the general Lagrange 
group. This symmetry group is formed by all those Lagrangian trans- 
formations (cf. below) that have the property of maintaining invariant the 
functional form of the Lagrangian, and hence, it belongs to the group of 
dynamical symmetries of the system (Mariwalla, 1975). 

It turns out that for most Lagrangian systems of mechanical interest, 
the point symmetry group appears as a finite-dimensional Lie group. The 
mechanical relevance of this group is mainly twofold. First, the associated 
Lie algebra is precisely the Noether algebra obeyed by the infinitesimal point 
symmetry generators of the Lagrangian function. Hence, this group can be 
also referred to as the Noether group. (This matter shall be studied in a 
forthcoming paper.) Second, the existence of the Noether group of a system 
settles the basis of the "special relativity" theery which is peculiar to that 
system. In fact, the Noether group contains all the coordinate trans- 
formations in configuration spacetime under which the Lagrangian behaves 
as an invariant function. In this sense one can speak, for instance, of the 
"special relativity" theory of the simple harmonic oscillator, or of the Kepler 
system, as one usually speaks of the special relativity (Galilean or Einstein- 
ian) theory of a free-particle system (Mariwalla, 1975). This generalization 
is not purely rhetorical. The dynamical generalization implied in this concept 
is important because most Lagrangians can be characterized by a "special 
relativity" theory, in a rather peculiar fashion. 

The organization of this paper is as follows: In Section 2 we present 
the point symmetry group of the Lagrangian function. Section 3 is devoted 
to a brief discussion of the problem set by the existence of c-equivalent 
Lagrangians. Finally, in Sections 4 and 5 we present two miscellaneous 
examples, namely, the Noether groups of the one-dimensional free particle, 
and that of the simple harmonic oscillator, respectively, which are explicitly 
calculated in these sections. 

2. THE POINT SYMMETRY GROUP OF THE LAGRANGIAN 

"Lagrangian transformations" have been discussed in paper I, as one 
of the basic tools of the transformation theory of mechanics. These 



Point Symmetry Group of the Lagrangian 1463 

transformations are defined as follows. One first considers a sufficiently 
smooth transformation of the variables (t; ql . . . .  , q") into a new set of 
variables (T; Q~ . . . . .  Qn) in configuration spacetime: 

r=T( t ,  q) 
(2.1) 

QJ = QJ(t, q) 

which are given in some specified open connected region R c  {(t, q)}, and 
are globally invertible on R. Then, if equations (2.1) are interpreted as a 
local transformation of coordinates in configuration spacetime, a new class 
of Lagrangian functions f, can be defined by 

TL(T, Q, Q)=KL(t, q, O)+G(t, q) (2.2) 

where L is the old Lagrangian, G an arbitrary gauge function, K an arbitrary 
constant, and QJ = dQJ/dT, with T denoting the new independent variable 
(cf. paper I for details). We call equation (2.2) aLagrangian transformation 
of L induced by a local coordinate transformation in configuration 
spacetime. 

Henceforth we use the same shorthand notation introduced in paper I. 
We write D to denote a general diffeomorphism in configuration spacetime, 
as defined in equation (2.1), and D - '  to denote its inverse. The symbolic 
expression D2, =D2D, denotes the composite diffeomorphism: 

T= T2[T,(t, q), Ql(t, q)] 

and QJ= Q{[T,(t, q), Q~(t, q)]. In particular, we write I fo r  the identity trans- 
formation: T= t and QJ = qJ. Accordingly, let us write the symbolic equation 

L = ( D ,  K, G)L (2.3) 

to briefly denote a general Lagrangian transformation of L under D, accord- 
ing to the law stated in equation (2.2). In this manner, we can also write 
/2 = (I, K, G)L as a symbol for a gauge transformation of L generated by K 
and G. 

In paper I it was shown that the set of all Lagrangian transformations 
constitutes a group (under a particular law of combination). We call this 
group the Lagrange group for n-dimensional Lagrangian systems, and we 
denote it by L(n)={(D, K, G)}. This is the most general group of point 
transformations acting on the set {L} (of all representative Lagrangians for 
n-dimensional systems) that keeps invariant the Lagrangian formalism of 
mechanics. 
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We now come to one of the main concepts of this subject. As a very 
special case of Lagrangian transformation, a coordinate transformation 

=f(t, q) (2.4) 
~J = f ( t ,  q) 

is called a point symmetry transformation of the Lagrangian function 
L(t, q, O) if, and only if, there exist a gauge function 0-(t, q) and a constant 
to, such that 

{L(~, q, ~t) = rL( t, q, O) + (r( t, q) (2.5) 

where ~J = d~J/di. Note that the symmetry gauge function 0-(t, q) and the 
symmetry scaling constant tr are no longer arbitrary (i.e., they are unique), 
for they are fixed by the functional form of L and by the considered point 
symmetry transformation (2.4). Indeed, this definition says that a point 
symmetry of  L is a coordinate transformation such that, when combined 
with a suitable gauge transformation, it keeps invariant the functional form 
of L in the sense of  the general law (2.2). 

Hence, using the same symbolic notation, let us also write the equation 

L = (S, to, 0-)L (2.6) 

to briefly denote the Lagrangian symmetry transformation (2.5) of  L, where 
S is the symbol for the associated symmetry coordinate transformation (2.4), 
and (/, ~r 0-) denotes the unique gauge transformation that participates in 
(2.5). See also paper I, Section 5. Note that the identity L =  (/, 1, 0)L is a 
trivial instance of equation (2.6).] Henceforth, (S, to, 0-) will be referred to 
as a point symmetry of L. 

The set of  all point symmetries (S, to, 0-) of a given Lagrangian function 
is endowed with the group property under the same product law of the 
Lagrange group L0, ) [cf. paper I, equation (5.7)], namely 

(Szl, tr = ($2, tr 0-2)($1, tel, o-1) = ($2S1, tCztr K20-1 + 0-2) (2.7) 

and the inversion law reads (S, tc, 0 - ) - ~ = ( S - ~ , ~ c - J , - t r  where 
~(f,  ~) = 0-(t, q). This group is called the point symmetry group of the Lag- 
rangian, and we shall denote it b y  G(L)= {(S, to, 0-)}. Usually, G(L) is a 
finite-dimensional Lie group, which acts locally in configuration spacetime 
through the symmetry diffeomorphisms S that characterize L (see also Sec- 
tion 4). In such case, we shall call G(L) the Noether group of the system. 

Each point symmetry group G(L) is a subgroup of the Lagrange group 
L~,). However, a word of caution is necessary concerning the group structure 
of G(L). Since every gauge transformation changes the form of the Lagrang- 
ian, one has (L ~:, 0-)r G(L), unless 1r = 1 and 0- = 0. Thus, the group G~n) of 
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all gauge transformations is not a subgroup of G(L), even if we restrict G(n) 
to those gauge transformations (/, ~c, o-) which participate in the elements 
of G(L). Technically, this means that G(L) is not the direct product (neither 
is it the semidirect product) of the group of point symmetries of  L [i.e., 
S~,+I)(L)={S}~{(S,I,O)}], and of the restricted gauge subgroup 
{(/, tr o-)} of G(n). In fact, one should underline that the following iso- 
morphism holds: 

G(L) ..~ S(,+ I~(L) (2.8) 

because for each SeS(,+ l)(L) the corresponding gauge factor (/, ~;, o-) that 
yields (S, ~c, o-) is unique and, furthermore, the one-to-one relation 
(S, ~;, o-) ~ S preserves the group structure. Hence, each group G(L) affords 
a faithful realization of the corresponding group S(,+I~(L) which acts in 
configuration spacetime. In other words, the fixed gauge transformation 
(/, ~c, or) that appears in (S, ~c, or) is indispensable for having a symmetry of 
L, but it does not contribute to the group structure of G(L), which is essen- 
tially the same as that of the group of diffeomorphisms S(,+ 1)(L). 

It is a simple exercise to show that 

/~ = (I, K, L)L ~ G(L) ~ G(L) (2.9) 

which means that all g-equivalent Lagrangians have essentially the same 
point symmetries. 

3. T H E  P R O B L E M  O F  c-EQUIVALENT LAGRANGIANS 

As we have seen in paper I, the concept of  g-equivalent (i.e., gauge- 
equivalent) Lagrangians plays a very important role in the transformation 
theory of  mechanics. In this section we discuss another concept of "equiva- 
lent Lagrangians" which is also useful because it gives rise to a fundamental 
problem in Lagrangian mechanics. In that paper, the following definition 
has been introduced: two given Lagrangians L and L (for n-dimensional 
systems) are said to be c-equivalent (i.e., curve-equivalent) when there exist 
a particular coordinate transformation and a suitable gauge transformation 
which transform one Lagrangian function into the other, in the sense of  
equation (2.2). 

According to this definition, the interesting problem arises: under what 
conditions does c-equivalence hold for two given (n-dimensional) Lagrang- 
Jan functions? For instance, one would like to know under what circum- 
stances one can transform a given system into a system of (say) uncoupled 
harmonic oscillators, by means of a special coordinate transformation com- 
bined with a suitable gauge transformation. This is a practical question 
indeed, because if one knows the allowed motions of the transformed system, 
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the inverse transformation of coordinates would automatically solve the 
problem of motion of the given system. As we shall see, the answer to 
this fundamental question is intimately related with the point symmetry 
properties exhibited by the two given Lagrangians. 

We next prove the following theorem: If S is a point symmetry of 
L(t, q, (t), then the conjugated diffeomorphism 

= DSD -i (3.1) 

is a point symmetry transformation for all those c-equivalent Lagrangians 
L(T, Q, ~)) obtained from L(t, q, q) by the action of D. 

The proof is as follows. By hypothesis, we have 

L= (S, x, o-)L (3.2) 

Let us then introduce a new Lagrangian function L, given by the Lagrangian 
transformation 

s = (D, K, G)L (3.3) 

where D is the diffeomorphism T= T(t, q) and Q J= QJ(t, q). We now define 
the function 

L'= (D, K, G)(S, to, cr)L (3,4) 

where D is the same diffeomorphism used in equation (3.3) [i.e., in equation 
(3.4), D stands for T= T(~, q) and 0J(i, 0), while G(~, q) is the same function 
G(t, q) used in equation (3.3), although expressed in terms of new coordi- 
nates (~, q)]. In this fashion, we see that 

s {), {}) =L(T, •, Q) (3.5) 

since it is only the "naming" of the coordinates that differs between equa- 
tions (3.3) and (3.4). Thus, we can write 

L=(D,  K, G)(S, to, cr)L (3.6) 

instead of equation (3.4), and so we get 

L=(D,  K, G)(S, to, a)(D, K, G)- IL  (3.7) 

from which the point symemtry of L follows immediately; i.e., we obtain 

L =  (S, ~, 6-)L (3.8) 

where the point symmetry (S, ~, 6-) of L is given by the conjugacy 

(~, t~, 6")=(9, K, G)(S, r,  cr)(O, K, G) -~ (3.9) 
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In this manner, we have S=DSD-1 [i.e., equation (3.1)], g =  ~r and 

d(T, Q)= Kcr(t, q ) -  ~r q)+ G(i, q) (3.10) 

as the reader can check. This finishes the proof of the theorem. 
Some consequences of this theorem follow. First, we observe that when 

two given Lagrangian functions are c-equivalent there is a one-to-one corres- 
pondence between their respective point symmetries [in fact, one has S= 
DSD -1 ~ S= D -1SD, where D is unique]. Moreover, the conjugacy (3.9) 
preserves the group structure of G(L). So we have the following corollary: 
A necessary condition for c-equivalence of two given Lagrangian functions 
is that their point symmetry groups be isomorphic; briefly, 

L=(D,  K, G)L ~ G(L)~G(L) (3.11) 

From a practical point of view, this means that it is not possible to 
transform a Lagrangian function into another (by means of a change of 
coordinates and a suitable gauge transformation) if they have different point 
symmetry properties. This answers (in part) the problem motivated by the 
notion of c-equivalent Lagrangians. However, it must be also mentioned 
here that the isomorphism G(L) ~ G(L) is not a sufficient condition to ensure 
the c-equivalence of L and s 

From a group-theoretic point of view, this means that the action of the 
Lagrange group L(n) on the set {L} is not transitive (e.g., Michel, 1972, 
pp. 133-i50). (In fact, there are many examples of Lagrangian functions, 
for n-dimensional systems, with nonisomorphic point symmetry groups and 
there is no element of L(n) available to "connect" such Lagrangians.) Hence, 
the set {L} becomes decomposed into disjoint classes of c-equivalent Lagran- 
gians, and the action of L(n) is transitive only within each c-class of Lagran- 
gians. Furthermore, each c-class is characterized by a well-defined group, 
which becomes locally realized as the group G(L)~ S(n+ ~)(L) for any func- 
tion L that belongs to the given class. The general interest of these results 
for the Lagrangian theory of interactions is immediate. 

4. POINT SYMMETRIES OF THE ONE-DIMENSIONAL 
FREE-PARTICLE LAGRANGIAN 

We devote this section to the study of the point symmetry group G(Lo) 
of a one-dimensional free particle: 

Lo(O)-- �89 (4.1) 

[Besides its intrinsic interest, let us here recall that all one-dimensional 
Newtonian linear systems are c-equivalent to the system/]--0 (Arnold, 1988, 
p. 44).1 
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Hence, we search for a coordinate transformation i = f ( t ,  q) and 4 = 
g(  t, q) such that 

f~2 = tr + 26-(1, q) (4.2) 

holds for some (yet unknown) tr and o-(t, q). Equation (4.2) can be written 
in the form of a third-order polynomial in q, which must vanish identically 
for all values of q. Thus, after some manipulations, we obtain the following 
system of nonlinear first-order partial differential equations: 

fq=O 

g~- ~f,=0 
(4.3) 

gtgq - ~ q f  = 0 

gZ-2chf ,=0  

The first three equations can be integrated directly, to read 

f = p (  t) 

g = [tcl3(t)]'/2q + ~o(t) (4.4) 

cr = [ tc ~(  t) /413( t) ]q 2 + [tc/~(t)] l /2 (o( t)q + 11 ( t) 

where p, ~0, and/1 are functions of t which one has to determine by substitut- 
ing from equations (4.4) into the fourth equation in (4.3). This substitution 
yields a polynomial of the second order in q, which vanishes identically and, 
hence, the coefficients give the following equations: 

d ' 

d ( )_ 

# 
2~5 

which one easily integrates. 
In this fashion, the most general solutions to equation (4.3) can be 

written in the form 

i - k l t + k z  

1 - k 3 t  (4.6) 
k4q + kst  + k6 4- 

1 - k 3 t  
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where the k's are six constants of integration and the associated symmetry 
gauge transformation (/, ~r 0-) is given by 

[k3k4q + (ks + k3k6)] 2 
a( t, q) ~- ao 

2k3(k~ + k2k3) (1 - k3t) 
(4.7) 

k] 
K?--  

k~ + kzk3 

where 0"0 is an arbitrary (unnecessary) constant of integration, provided that 
o- be is defined at k3 = 0. 

The arbitrary k's are essentialparameters of a faithful (local) realization 
of a six-dimensional Lie group Go; i.e., G(Lo)~ Go. The identity element of 
Go corresponds to the choice k~ = 1, k2 = k3 = 0, k4 = 1, k5 = k6 = 0, and the 
group multiplication law in Go is given by 

k]kl-k~k3 
k ~ -  

1-k~k2 

k~_k~+k]k2 
1 -k~k2 

k~kl +k3 
k ~ -  

1 -k~k2 

k'4k, k ~ - - -  
1 -k~k2 

k~ = k'sk~ - k'~3 + k~k5 

1 -k'3k2 

k' +t. , t .  +l.,1. k~= 6 r'-5~2 ~ 4 ~ 6  

1 - k'3k2 

(4.8) 

from which one obtains the group inversion law, as well as the associative 
law, for the parameters of  G(Lo). 

One easily obtains the one-parameter subgroups of G(Lo). The homo- 
geneous Galilei group (in two-dimensional spacetime) is a subgroup of G(Lo), 
characterized by the "boost parameter" ks. We observe that the group of 
affine transformations of the real line { - ~  < q<  ~ }  is also a subgroup of 
G(Lo), which is realized by the following diffeomorphism in two-dimensional 
spacetime: i = t, ~ = k4q + k6, with cr = 0, and 1r = k]. 

Another interesting (five-parameter) subgroup of G(Lo) can be found 
if one sets tc = 1 in equation (4.2) to begin with. The reader can convince 
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herself or himself that with this choice for tr one gets k4=(kl +k2k3) 1/2 
in the general solution given by equations (4.6) and (4.7), as consistency 
demands. 

Let us here clarify some subtle points concerning the constant to. First, 
note that even when one has ~c va 1, one does not get 

L(t, q, (t) ~ tcL(i, ~, ~), 

as one would think on first sight. Rather, one gets L(t, q, (t)--.L(i, q, ~); 
that is, one has a symmetry of the Lagrangian, sensu stricto, even when it 
turns out that t r r  1. Second, we note that tcr  1 does not appear only as a 
consequence of  a trivial change of scale in t or in q (or in both);  more 
involved symmetry transformations of  spacetime coordinates also can be 
related with this result. Finally, let us observe that if one imposes the condi- 
tion lc = 1 from the beginning, one usually obtains a subgroup of  the full 
point symmetry group G(L) of the given Lagrangian function L. 

5. THE NOETHER GROUP OF A SIMPLE 
HARMONIC OSCILLATOR 

As we have already observed, the foregoing example has far-reaching 
consequences because of the c-equivalence property of  all one-dimensional 
linear systems. For  instance, it is well known that the local coordinate 
transformation 

T=  tan cot 
(5.1) 

Q = q sec co t 

reduces the equation of  motion ~ + coZq = 0 to the free particle equation Q = 
0. In fact, if we consider the Lagrangian Lo(Q)= ~Q2 under this diffeo- 
morphism, after some manipulations we obtain 

�89 ~(22= ~ (02_ co2q2) + ddt (�89 tan cot) (5.2) 

(cf. paper I), where we identify K =  co - i and G(t, q) = }q2 tan cot. This means 
that the Lagrangians Lo = �89 2 and L =  �89 2) belong to the same c- 
class, and therefore one has G(L)~ G(Lo)~ Go. 

Hence, in order to obtain the group G(L), we can proceed as follows. 
Recalling equations (4.6), and using equation (5.1), let us write the 



Point Symmetry Group of the Lagrangian 1471 

diffeomorphism 

~=k~T+k2  k~ tan cot+k2 
- - - - =  tan co i -  (5.3a) 

1 - k 3 T  1 -k3  tan cot 

,~=k4Q + ksT + k6_ o sec coi - k 4 q  sec cot+ks tan cot+k6 
(5.3b) 

1 - k 3 T  1 -k3  tan cot 

the meaning of which is clear. Then, after some simple steps, we obtain 
(Aguirre and Krause, 1987, 1988a,b) 

sin coi= k~ sin cot+k2 cos cot (5.4a) 
[(kl sin cot+k2 cos cot)2+ (cos cot-k3 sin cot)2] 1/2 

k4q+k5 sin cot+k6 cos cot 
q= [(kl sin cot+k2 cos cot)z+ (cos cot-k3 sin cot)2] 1/2 (5.4b) 

In the same manner, from equations (3.10) and (4.7) we get the associ- 
ated gauge quantities for the realization of G(L). (We leave this task to 
the reader.) Equations (5.4) entail the point symmetries of the standard 
Lagrangian L = �89 - c o Z q 2 ) .  In fact, they correspond to a new faithful reali- 
zation of the same Lie group Go whose abstract structure in terms of the 
group parameters is exhibited in equations (4.8). Thus, we have obtained 
the Noether group of the simple harmonic oscillator, which is the largest 
group of spacetime coordinate transformations endowed with the property 
of keeping invariant the standard Lagrangian of the system. The infinitesimal 
symmetry transformations obtained from equations (5.4) yield the Noether 
theory of the simple harmonic oscillator, 
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